海志蓄電池八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。
分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。
設計方法
電源的電磁干擾水平是設計中難的部分,設計人員能做的多就是在設計中進行充分考慮,尤其在布局時。由于直流到直流的轉換器很常用,所以硬件工程師或多或少都會接觸到相關的工作,本文中我們將考慮與低電磁干擾設計相關的兩種常見的折中方案[1]
電源設計中即使是普通的直流到直流開關轉換器的設計都會出現一系列問題,尤其在高功率電源設計中更是如此。除功能性考慮以外,工程師必須保證設計的魯棒性,以符合成本目標要求以及熱性能和空間限制,當然同時還要保證設計的進度。另外,出于產品規范和系統性能的考慮,電源產生的電磁干擾(EMI)必須足夠低。不過,電源的電磁干擾水平卻是設計中難預計的項目。有些人甚至認為這簡直是不可能的,設計人員能做的多就是在設計中進行充分考慮,尤其在布局時。
盡管本文所討論的原理適用于廣泛的電源設計,但我們在此只關注直流到直流的轉換器,因為它的應用相當廣泛,幾乎每一位硬件工程師都會接觸到與它相關的工作,說不定什么時候就必須設計一個電源轉換器。本文中我們將考慮與低電磁干擾設計相關的兩種常見的折中方案;熱性能、電磁干擾以及與PCB布局和電磁干擾相關的方案尺寸等。文中我們將使用一個簡單的降壓轉換器做例子,如圖1所普通的降壓轉換器圖1.普通的降壓轉換器在頻域內測量輻射和傳導電磁干擾,這就是對已知波形做傅里葉級數展開,本文中我們著重考慮輻射電磁干擾性能。在同步降壓轉換器中,引起電磁干擾的主要開關波形是由Q1和Q2產生的,也就是每個場效應管在其各自導通周期內從漏極到源極的電流di/dt。圖2所示的電流波形(Q和Q2on)不是很規則的梯形,但是我們的操作自由度也就更大,因為導體電流的過渡相對較慢,所以可以應用Henry Ott經典著作《電子系統中的噪聲降低技術》中的公式1。我們發現,對于一個類似的波形,其上升和下降時間會直接影響諧波振幅或傅里葉系數(In)。
影響蓄電池壽命的環境因素
1、環境溫度
鉛酸蓄電池正常運行的溫度是20-4口℃, 佳運行溫度是25℃.當溫度每升高5℃,蓄電池的使用壽命降低10%,且容易發生熱失控.
2、環境濕度
鉛酸蓄電池的運行濕度應該在5^--95%《不結露)之lad,境濕度過高,會在蓄電池表面結露,容易出現短路;PF境濕度過低,容易產生靜電.
3、灰塵
灰塵過多,容易使鉛酸蓄電池短路,安全閥堵塞失效.